If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-5t+3=0
a = 1; b = -5; c = +3;
Δ = b2-4ac
Δ = -52-4·1·3
Δ = 13
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{13}}{2*1}=\frac{5-\sqrt{13}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{13}}{2*1}=\frac{5+\sqrt{13}}{2} $
| 5.1x=10 | | 8(7x-8)=20 | | 3(2n+7)=15 | | 3x+28=4 | | 6^2x-1=18 | | 6x+2=18/12 | | 3v/7=-15 | | 27.5x=23.5x+17 | | 7x+8+4x+13=12x+12 | | 12x+8=25 | | -2x+10=-34 | | 0.3(5+6x)=0.2(3+10x) | | -d+(2/5)=(1/6) | | 33x+2=26x+1 | | -32=-2w | | 2y+10÷2=80 | | -1+9x=7x+17 | | 10k-7=2(13-5k | | 5+(3)4^(2x-1)=29 | | 60=25(x)^10 | | 17x-5=20x | | 6x+4(5)=14 | | 16=2w+4 | | 2÷5x-4=5 | | 2x=(3x+20) | | 2(8x2)=576 | | -40=-5+v/5 | | 12(x-1)=7x+18 | | 4x2-20x+25=10 | | b^2=475 | | x-4×7=42 | | 12/x+5/x-3=1/x |